CONCEPTUAL
(1) Largest: 6 when

A ko: 0 when

Smallest: -6 when
(2) I's x circle:

(3) θ is between $0 \mathrm{and} \pi$.

So it can be recovered from $\cos \theta$, but not from $\sin \theta$, since $\sin \theta$ is not one-to-one on that interval.

I'll just check the marked angle as an example:

$$
\begin{aligned}
& \vec{u}=\langle 0,1,2\rangle-\langle 0,2,1\rangle=\langle 0,-1,1\rangle \\
& \vec{v}=\langle 1,2,0\rangle-\langle 0,2,1\rangle=\langle 1,0,-1\rangle
\end{aligned}
$$

$|\vec{n}|=|\vec{v}|=\sqrt{2} \longleftarrow$ side length of hexagon

$$
\vec{u} \cdot \vec{v}=-1 . \quad \cos \theta=\frac{-1}{2}
$$

So $\theta=\frac{2 \pi}{3}\left(120^{\circ}\right)$. angles.

